Cell re-entry assays do not support models of pathogen- independent translocation of AvrM and AVR3a effectors into plant cells

نویسندگان

  • Benjamin Petre
  • Michaela Kopischke
  • Alexandre Evrard
  • Silke Robatzek
  • Sophien Kamoun
چکیده

The cell re-entry assay is widely used to evaluate pathogen effector protein uptake into plant cells. The assay is based on the premise that effector proteins secreted out of a leaf cell would translocate back into the cytosol of the same cell via a yet unknown host-derived uptake mechanism. Here, we critically assess this assay by expressing domains of the effector proteins AvrM-A of Melampsora lini and AVR3a of Phytophthora infestans fused to a signal peptide and fluorescent proteins in Nicotiana benthamiana. We found that the secreted fusion proteins do not re-enter plant cells from the apoplast and that the assay is prone to false-positives. We therefore emit a cautionary note on the use of the cell re-entry assay for protein trafficking studies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lipid binding activities of flax rust AvrM and AvrL567 effectors.

Effectors are pathogen-encoded proteins that are thought to facilitate infection by manipulation of host cells. Evidence showing that the effectors of some eukaryotic plant pathogens are able to interact directly with cytoplasmic host proteins indicates that translocation of these proteins into host cells is an important part of infection. Recently, we showed that the flax rust effectors AvrM a...

متن کامل

Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the absence of the pathogen.

Translocation of pathogen effector proteins into the host cell cytoplasm is a key determinant for the pathogenicity of many bacterial and oomycete plant pathogens. A number of secreted fungal avirulence (Avr) proteins are also inferred to be delivered into host cells, based on their intracellular recognition by host resistance proteins, including those of flax rust (Melampsora lini). Here, we s...

متن کامل

Structures of the flax-rust effector AvrM reveal insights into the molecular basis of plant-cell entry and effector-triggered immunity.

Fungal and oomycete pathogens cause some of the most devastating diseases in crop plants, and facilitate infection by delivering a large number of effector molecules into the plant cell. AvrM is a secreted effector protein from flax rust (Melampsora lini) that can internalize into plant cells in the absence of the pathogen, binds to phosphoinositides (PIPs), and is recognized directly by the re...

متن کامل

Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible.

A wide diversity of pathogens and mutualists of plant and animal hosts, including oomycetes and fungi, produce effector proteins that enter the cytoplasm of host cells. A major question has been whether or not entry by these effectors can occur independently of the microbe or requires machinery provided by the microbe. Numerous publications have documented that oomycete RxLR effectors and funga...

متن کامل

The RxLR Motif of the Host Targeting Effector AVR3a of Phytophthora infestans Is Cleaved before Secretion.

When plant-pathogenic oomycetes infect their hosts, they employ a large arsenal of effector proteins to establish a successful infection. Some effector proteins are secreted and are destined to be translocated and function inside host cells. The largest group of translocated proteins from oomycetes is the RxLR effectors, defined by their conserved N-terminal Arg-Xaa-Leu-Arg (RxLR) motif. Howeve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016